Progress and Prospects in EEG-Based Brain-Computer Interface: Clinical Applications in Neurorehabilitation
نویسندگان
چکیده
Several patients are no longer able to communicate effectively or even interact with the outside world in ways that most of us do it. For instance, severe cases astetraplegic or post-stroke patients are literally 'locked in' their bodies, unable to exert any motor control after a spinal cord injury or a brainstem stroke, requiring alternative methods of communication and control. However, in the near future, their brains may offer them a way out. EEG-based braincomputer interface (BCI) is the technique utilized to measure brain activity and by the way that different brain signals are translated into commands that control an effector (e.g., controlling a spelling system via eye movements). Here,we aim to review the basic concepts of EEG-based BCI and the main advances in communication, in motor control restoration and in downregulation of cortical activitythat seem to be relevant for clinical applications in the coming years forneurorehabilitation of severely limited patients. It allows brain-derived communication in patients with amyotrophic lateral sclerosis and motor control restoration in patients after spinal cord injury and stroke. In addition, epilepsy and attention deficit and hyperactive disorder patients were able to downregulate their cortical activity. Owing to the rapid progression of EEG-based BCI research over the last few years and the swift ascent of computer processing speeds and signal analysis techniques, we suggest that emerging ideas related to clinical neurorehabilitation of severely limited patients will generate viable clinical applications in the near future.
منابع مشابه
A review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملControl of a 2-DoF robotic arm using a P300-based brain-computer interface
In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013